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Introduction 
We address the problems of finding patterns and detecting anomalous activities in volatile time-evolving networks 
such as communication networks (as opposed to slowly evolving networks like co-authorship graphs).  Our 
approach, DAPA-V10, utilizes a simple compact graph representation that assigns weights to edges in a way that 
captures the frequency, duration, and recency of edges.  Given this weighted “cumulative” graph, DAPA-V10 finds 
persistent patterns by extracting connected components of regularly-occurring edges.  These persistent patterns 
provide a basis for expected normal behavior in the network over time, which are then utilized to detect anomalous 
behavior on both local and global scales.  In particular, DAPA-V10 uses a scalable approach based on the Product 
Rule for the Central Limit Theorem to measure the likelihood of events and flag anomalies.  Figure 1 provides an 
overview of DAPA-V10.  Experiments on the Enron email dataset illustrate the effectiveness of our approach. 

2. A weighted cumulative 
graph is used to measure 
the average strengths of 
relationships.

3. Persistent patterns are 
identified. Substructures 
are selected to track 
activity both within and 
between components.

4. Substructures are 
monitored, flagging 
abnormal activity 
for investigation 
and analysis.

1. Timestamped edges are read in from  a 
database to construct a dynamic graph.

Source Dest. t_start t_end

v49273 v71192 t = 5 t = 9

v83492 v12987 t = 12 t = 14

v40927 v62198 t = 13 t = 16

v98364 v39872 t = 20 t = 21

v18964 v38719 t = 20 t = 25

 

Figure 1. Pictorial overview of DAPA-V10.  The graphs in steps 2 and 3 are from the Enron 
dataset with darker edges representing stronger relationships. 

 

DAPA-V10: Graph Representation 
We model a time-evolving network as a dynamic graph G = (V, ET), composed of a fixed set of vertices V and a set 
of time-stamped edges ET.  The graph Gt = (V, Et) represents the network at time t.  For simplicity, we assume that 
Gt is not a multi-graph (i.e., there is at most one edge between each pair of vertices at any given time.)  To capture 
recent activity, we construct a weighted cumulative graph, G′t = (V, E′t, W′t).  It encapsulates all past edges but gives 
greater weight to more recent ones.  We formalize the cumulative graph as follows.  Given a dynamic graph G and a 
decay function f, the cumulative graph at time t is the weighted graph G′t where each edge e has weight:  
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The decay function f(e) may depend on the semantics, duration, frequency, and recency of the edges.  A popular 
choice for time-evolving networks is the exponential decay model, but other models may be used as appropriate for 
a given dataset. 

DAPA-V10: Identifying Persistent Patterns 
In order to recognize an anomalous event, DAPA-V10 first establishes a basis for normal behavior by identifying 
persistent patterns among vertices.  A persistent pattern is a collection of vertices that (1) form a connected 
component and (2) communicate regularly.  Given a cumulative graph G′, we can identify persistent patterns by 
extracting connected components composed of edges whose weights are above a threshold θ.  In full generality, the 
value of θ may be different for each component, and choosing appropriate values may depend on multiple factors 
such as the distribution of the edge weights and the semantics associated with the edges.  The intention is that a 
persistent pattern represents a set of vertices with regular communication patterns, which can subsequently be used 
to detect deviations from the norm. 

In this work, we utilize the following threshold scheme.  First, we generate the average-weight graph by assigning 
to each edge a weight corresponding to the fraction of time that edge exists in the graph.  We then use a sliding 
threshold to extract components from the average-weight graph.  In this scheme, the weight threshold is gradually 
decreased until a component of size greater than square root of |V| emerges.  Edges in the component are removed 
from the graph, and the process is then repeated on the remaining graph.  Note that since only edges are removed 
and not vertices, a single vertex may be in several persistent patterns.  This is a realistic model since people typically 
engage in an assortment of communications.  Figure 2 depicts the distribution of edge weights from the average-
weight Enron email graph, along with the threshold points used to determine components.  The persistent patterns 
found in the Enron email graph are highlighted in Figure 1 (Step 3). 
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Figure 2.  Cumulative distribution of edge weights in the average-weight Enron email graph.  
The red vertical lines represent threshold points (computed as described above).  From left 
to right, they are: 1.1E-05, 2.3E-05, 3.4E-05, 6.8E-05, 1.3E-04, and 3.3E-04. 

DAPA-V10: Anomaly Detection 
To detect anomalies, we compare current activity at a particular time with the expected activity based on recent 
behavioral patterns, and classify an event as anomalous if it differs significantly from the expected activity.  We 
model recent behavior using the aforementioned cumulative graph with exponential decay and a half-life of 10 days. 

Our goal is to identify any anomalous local or global event.  More specifically, we want to analyze whether a subset 
of vertices in the network U ⊆ V is exhibiting anomalous behavior at time t.  Let we denote the weight of edge e in 
the cumulative graph G′t.  For each edge e, we define the random variable: Xe = {we if e in Et, 1 – we otherwise}.  To 
measure likelihood of events (determined by which edges in U exist at time t), we define a product random variable: 
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Values of XU provide our likelihood measure. 

To determine whether a subset U is anomalous at time t, we compare the value XU(t) to the distribution of values of 
XU, which can be approximated by appealing to the Product Rule for the Central Limit Theorem: 
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approximate the distribution of Xe by using pe = (# of occurrences of e before time t)/t as an estimate of the 
probability that edge e exists at time t.  The subset U is identified to be anomalous at time t if  
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where α is a pre-defined anomalicity threshold. 

Alternatively, one may consider DAPA-V10 as assigning an anomalicity score to every subset being analyzed.  In 
practice this may be used to flag the most anomalous events for further investigation, proceeding in decreasing order 
of anomalicity as time and resources allow. 

Our approach can be used to monitor a given substructure of the network for anomalous behavior, but does not give 
an intuition for which substructures to monitor.  DAPA-V10 combines this technique with the persistent pattern 
identification algorithm described in the previous section.  Specifically, we independently monitor sets of edges 
within each identified persistent pattern and between each pair of patterns, as well as the edges incident to each 
single vertex.  DAPA-V10 is not restricted to these substructures, however; others may be selected for monitoring as 
desired, and may depend on the application. 

Recall that a single vertex can belong to multiple persistent patterns depending on the weights on its edges and the 
threshold scheme.  However, since each edge appears in exactly one persistent pattern, the runtime of the DAPA-
V10 anomaly detection algorithm is O(m), where m is the number of distinct edges in the network.  Therefore, our 
approach is scalable to very large networks with millions of edges. 

Experiments 
We test the effectiveness of the DAPA-V10 algorithm using the Enron dataset, a collection of emails sent between 
Enron employees over a period of 5 years from 1997-2002 (available at http://www.cs.cmu.edu/~enron/).  Our goal 
is to identify persistent patterns in communication among sets of Enron employees and detect anomalous behavior in 
their email activity.  We first clean the raw data by removing emails sent outside of Enron and low-degree vertices, 
which leaves us with 672 employees and 4417 emails between them.  

Using the average-weight graph, our algorithm first finds persistent patterns in the data.  Following the threshold 
scheme detailed above, DAPA-V10 finds 6 subsets of sizes {41, 25, 43, 58, 89, 361} that represent connected 
components of Enron employees with regular communication.  The largest component is composed of many 
“fringe” vertices that are loosely connected to some of the “core” vertices and occasionally to each other.  This 
observation was also made by Leskovec, et al. [8]. 

DAPA-V10 then selects a set of substructures in the network, based on the persistent patterns found, and monitors 
them for anomalous activity as the network evolves.  Specifically, it checks whether the activity in the past day 
differs significantly from the typical behavior over the last couple of weeks (using an exponential decay model with 
decay rate of 10 days).  In our experiments, we track three types of substructures: vertex neighborhood structures 
(email of a single employee), intra-link structures (email between employees in a persistent pattern), and inter-link 
structures (email between employees in two separate persistent patterns). 

Figure 3 compares anomalies found by DAPA-V10 with events surrounding the Enron scandal.  The close 
correspondence illustrates the effectiveness of our approach.  The full timeline of the Enron scandal is available at 
http://en.wikipedia.org/wiki/Timeline_of_the_Enron_scandal#1999.  It includes details about the anomalies found 
prior to 2001.  For example, the anomaly discovered at the end of 1999 corresponds to the launch of EnronOnline. 



Timeline of Enron Scandal # of Anomalies Found by DAPA-V10 
Time Event 0 5 1 0 1 5 2 0 2 5 3 0

1 0 / 9 9
2 / 0 0

6 / 0 0

1 0 / 0 0
2 / 0 1

6 / 0 1

1 0 / 0 1
2 / 0 2

 

  
  
  
  
  
  
  
  

2/01 Executives get $1M bonuses; stock is soaring 
4/01 Q1 profit $536M; Wall St. analyst suspicious 

7/01 Reported earnings $50B; share price dropping 

8/01 Public criticism of Enron accounting practices 

9/01 9/11 attacks; Enron director sells 500K shares 

10/01 Q3 loss of $618M; SEC begins investigation 

11/01 Acquisition offer, revoked; ‘junk’ credit rating 
12/01 Enron files for bankruptcy, lays off employees 

Figure 3. The number of anomalies detected by the DAPA-V10 algorithm on the Enron email 
dataset from October 1999 to February 2002, juxtaposed with a timeline of events surrounding the 
Enron scandal. 

Related Work 
Akoglu et al. [1] provide a nice empirical study of laws governing weighted time-evolving graphs.  Goetz et al. [4] 
focus on blogs and model the bursty behavior observed there.  Sharan and Neville [10] use a weighted summary 
graph (with an exponential decay model) that is similar to our cumulative graph.  However, their task is to construct 
temporal-relational classifiers for time-evolving graphs.  Kahanda and Neville [5] describe a statistical relational 
learning approach for predicting link strength in online social networks.  DAPA-V10 can utilize their approach to 
help estimate edge strengths when identifying persistent patterns. 

Our persistent patterns can also be thought of as communities in a social context.  Community discovery in time-
evolving graphs has been given a good deal of attention lately [6, 7, 9].  Much of this work defines communities as a 
clustering of the vertices in a graph with high modularity (high intra-cluster and low inter-cluster density), or by 
using compression-based techniques [11].  Our persistent patterns provide a more general definition that allows for 
more variety in communication patterns. 

Sun, et al. [11] developed an anomaly detection algorithm called GraphScope, which finds communities in a 
dynamic graph by utilizing a compression-based approach.  A comparison of the anomalies detected by DAPA-V10 
and GraphScope on the Enron dataset shows that they find many of the same anomalies.  However, there are several 
differences between our approach and GraphScope.  For instance, GraphScope does not permit overlapping 
communities, while our definition of persistent patterns allows vertices to be members of multiple communities. 

Lastly, there has been some work on identifying times of heightened activity across an entire network [11, 12].  
However, as mentioned before, DAPA-V10 is able to identify anomalous events on both a local and global scale.  
Chandola, et al. [3] have a nice recent survey on anomaly detection.  Boettcher, et al. [2] provide an excellent 
overview of change mining. 

Future Work 
As our next step, we intend to conduct a comprehensive set of experiments on various volatile time-evolving 
networks.  Our goal here will be to identify exact substructures that are correlated with anomalous behavior.  Of 
particular interest is identifying subtle activities that may not be visible on a global scale. 



Another direction is to study edge correlations, that is, edges whose patterns of occurrence are not independent.  
This could affect how we determine an anomalicity score for each substructure, and may help eliminate false 
positives.  We could also normalize edge weights at each time step based on the total network activity at the time.  
This would help to find local anomalies independent of global trends in network activity. 

Incorporating semantic information from complex networks is another promising direction of future work.  Many 
real-life networks are rich in semantic information, which could greatly improve the accuracy and reliability of 
DAPA-V10 in identifying anomalous activity. 

Conclusions 
We present DAPA-V10, a novel algorithm that addresses the task of anomaly detection in time-evolving networks.  
Our approach first identifies persistent patterns in the network.  For volatile time-evolving networks, such as many 
communication networks, the task of identifying persistent patterns in the data is non-trivial and important in its own 
right.  Then, based on those patterns, we select subgraphs to monitor for anomalous activity at the network evolves. 

One major advantage of DAPA-V10 is that it can find local anomalies efficiently, whereas previous work focuses 
mainly on identifying global anomalies (i.e., identifying times of higher activity levels overall).  This advantage 
allows us to pinpoint the source of unusual behavior for further analysis.  Furthermore, by assigning an anomalicity 
score to each substructure, they can be ranked in order of anomalicity.  In this way, DAPA-V10 can serve as a guide 
for human-directed analysis, where analysts may choose to investigate as few or as many potentially anomalous 
substructures as they deem necessary. 

Finally, we evaluate our algorithm by running experiments on the Enron email dataset.  With the growing security 
challenges faced today, from monitoring network traffic for spam or viruses to exposing botnets, DAPA-V10 
provides a promising avenue for an effective solution to the problem of anomaly detection in volatile time-evolving 
networks. 
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